PHASE RELATIONS IN THE SYSTEM SbVO₅-Sb₃V₂Mo₃O₂₁ IN SOLID-STATE AND IN AIR The solid solutions of MoO₃ in SbVO₅

Elżbieta Filipek^{*}

Institute of Chemistry and Environment Protection, Technical University of Szczecin, Al. Piastow 42, 71-065 Szczecin, Poland

Abstract

It has been established by XRD, DTA and TG methods that phases of solid solution type of MoO₃ in SbVO₅ are formed in the system V₂O₅–MoO₃– α -Sb₂O₄. The Mo⁶⁺ ions are incorporated into the crystal lattice of SbVO₅ instead of both Sb⁵⁺ and V⁵⁺, while the charge compensation occurs by a formation of cation defects (\Box) at Sb⁵⁺ and V⁵⁺.

The phases $Sb_{1-6x}\Box_x V_{1-6x}\Box_x Mo_{10x}O_5$ are stable in the solid-state up to $690\pm10^{\circ}C$ and the limit of solubility of MoO₃ in SbVO₅ does not exceed 20.00 mol%.

Keywords: DTA, solid solution models, V2O5-MoO3-a-Sb2O4 system, XRD

Introduction

Oxide catalysts with a composition that can be described by the system V–Mo–M–O, where M=Sb, Al, Ga, Bi and Te, show high activity and selectivity in processes of oxidation of light hydrocarbons [1]. In recent years intensive investigations are performed aimed at – first of all – obtaining new, active, highly selective catalysts for the reaction of obtaining acrylonitrile (ACN) by direct amoxidation of propane. Among various investigated catalysts of this reaction the most promising ones for technological applications appear to be those comprising V₂O₅, MoO₃ and α -Sb₂O₄ as well as compounds formed in respective systems built from these oxides [2–5].

Our earlier studies have shown that the components of the system $V_2O_5-\alpha$ -Sb₂O₄ react with each other in the solid-state in air with a formation of a previously unknown compound SbVO₅ that decomposes at ~720°C in the solid-state to SbVO_{4.5} and oxygen [6]. It is also known that in the ternary system V_2O_5 -MoO₃- α -Sb₂O₄ there exists a compound Sb₃V₂Mo₃O₂₁ [7]. This compound melts incongruently at 740°C and a solid product of its melting is SbVO_{4.5} [7, 8]. The aim of this work was investigating the phase relations over the whole component concentration range in the system SbVO₅-Sb₃V₂Mo₃O₂₁ in air atmosphere as well as establishing whether MoO₃ forms solid solutions in SbVO₅.

Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht

^{*} Author for correspondence: E-mail: elafil@ps.pl

Experimental

The reacting substances used in research were Sb₂O₃ pure (Merck, Germany), V₂O₅ and MoO₃ pure (POCh, Gliwice, Poland), α -Sb₂O₄ – obtained by heating commercial Sb₂O₃ in air [6], SbVO₅ and Sb₃V₂Mo₃O₂₁ – both obtained by methods described in the works [6, 7]. For investigations of the phase relations in the system SbVO₅–Sb₃V₂Mo₃O₂₁, 10 samples were prepared from the oxides V₂O₅, MoO₃ and α -Sb₂O₄, and 4 samples from the compounds SbVO₅ and Sb₃V₂Mo₃O₂₁. The composition of the samples is presented in Table 1. The reacting substances mixed at appropriate proportions were homogenised by grinding, shaped into pellets and heated cyclically under conditions enabling for sure the equilibrium state to be established, i. e.: I cycle: 400°C (1 h) \rightarrow 500°C (24 h); II cycle: 600°C (48 h); III cycle: 640°C (24 h); IV cycle: 650°C (24 h).

After each heating cycle the mass and colour changes of the samples were controlled, they were subjected to DTA analysis (a derivatograph of Paulik–Paulik–Erdey in air atmosphere in the temperature range 20–1000°C at a heating rate of 10°C min⁻¹ and with the mass of samples equal to 500 mg) and their composition was established on the base of the XRD analysis results (Dron-3 diffractometer, CoK_{α}, radiation, iron filter) and the data contained in PDF cards [11] and in the works [6–8]. Attaining the equilibrium state was determined by following the procedure described among others in the works [9, 10, 12, 13].

Results and discussion

The XRD analysis results of both samples prepared from oxides and those prepared from ready phases, after their last heating samples, i. e. in equilibrium state, are presented in Table 1.

Diffraction patterns of preparations containing in their initial oxide mixtures 10.00 or 15.00 mol% MoO₃ after the final heating cycle revealed the presence of a set of diffraction lines with positions consistent with the SbVO₅ characteristics [6]; the only difference was a change in their relative intensities. In these samples the presence of traces of α -Sb₂O₄ could not be excluded. Samples representing the remaining range of component concentration of the investigated system, i. e. comprising above 15.00 mol% MoO₃, contained SbVO₅ and Sb₃V₂Mo₃O₂₁, and some of them – also traces of α -Sb₂O₄. Moreover, in the samples comprising 50.00, 52.50 and 53.46 mol% MoO₃ the SbVO₅ phase was identified in small amounts. The synthesis of all preparations from oxides was accompanied by mass increases amounting to 0.3–1.2 mass%. The recorded DTA curves of all samples at equilibrium revealed two endothermic effects up to 1000°C, the first beginning at 690±10°C and the other ranging with its onset from 740 to 810°C. The first effect was associated with a mass loss of the samples (TG curve) that ranged with increasing the MoO₃ content in the initial mixtures from 3.0 to 2.5 mass%.

The obtained results of this part of research indicated that in the investigated system a solid solution of MoO₃ in SbVO₅ was formed and it finally remained at equilibrium with α -Sb₂O₄ or with α -Sb₂O₄ and Sb₃V₂Mo₃O₂₁. The first endothermic effect beginning at ~690°C is due to a decomposition of the solid solution of MoO₃ in SbVO₅, which is ev-

Composit	ion of oxide m	ixtures/mol%	Contents of Sb ₃ V ₃ Mo ₃ O ₃₁ calculated	
MoO_3	V_2O_5	α -Sb ₂ O ₄	including components of system/mol%	Phase composition in equilibrium state
10.00	44.17	45.83	3.92	$SbVO_{5(s,s)}+\alpha$ - Sb_2O_4**
15.00	41.25	43.75	6.43	$SbVO_{5(s,s)}+\alpha$ - $Sb_2O_4^{**}$
20.00	38.33	41.67	9.52	$SbVO_{5(s,s)}+Sb_3V_2Mo_3O_{21}**$
25.00	35.42	39.58	13.33	$SbVO_{5(s,s)}+Sb_{3}V_{2}Mo_{3}O_{21}+\alpha-Sb_{2}O_{4}**$
30.00	32.50	37.50	18.18	$SbVO_{5(s,s)}+Sb_{3}V_{2}Mo_{3}O_{21}+\alpha-Sb_{2}O_{4}**$
35.00	29.58	35.42	24.56	$SbVO_{5(s,s)}+Sb_{3}V_{2}Mo_{3}O_{21}+\alpha-Sb_{2}O_{4}**$
40.00	26.67	33.00	33.33	$Sb_3V_2Mo_3O_{21}+SbVO_{5(s,s)}$
45.00	23.75	31.25	46.15*	$Sb_{3}V_{2}Mo_{3}O_{21}+\alpha-Sb_{2}O_{4}+SbVO_{5(s,s)}$
50.00	20.83	29.17	66.67*	$Sb_{3}V_{2}Mo_{3}O_{21}+\alpha-Sb_{2}O_{4}+SbVO_{5(s,s)}**$
52.50	19.38	28.12	82.35*	$Sb_{3}V_{2}Mo_{3}O_{21}+\alpha-Sb_{2}O_{4}+SbVO_{5(s,s)}**$
53.46	I	Ι	90°00*	$Sb_{3}V_{2}Mo_{3}O_{21}+\alpha-Sb_{2}O_{4}+SbVO_{5(s,s)}**$

FILIPEK: SbVO₅-Sb₃V₂Mo₃O₂₁

inb	
õ	
in	
JS	
IOI	
ati	
ar	
ep	
ū	
E.	
fo	
is	
S	
lal	
ar	
Ω	
R	
X	
of	
S	
ul	
cs	
-	
nc	
а	
21	
2 S	
10	
2	
\geq	
ĝ	
Ĩ	
õ	
ž	
9	
5	
en	
+	
Ś	
sys	
m sys	
rom sys	
trom sys	
les from sys	
ples from sys	
amples from sys	
samples from sys	
of samples from sys	
ss of samples from sys	
ares of samples from sys	
xtures of samples from sys	
nixtures of samples from sys	
l mixtures of samples from sys	
ial mixtures of samples from sys	
nitial mixtures of samples from sys	
^c initial mixtures of samples from sys	
of initial mixtures of samples from sys	
on of initial mixtures of samples from sys	
tion of initial mixtures of samples from sys	
ssition of initial mixtures of samples from sys	
position of initial mixtures of samples from sys	
mposition of initial mixtures of samples from sys	
Composition of initial mixtures of samples from sys	
1 Composition of initial mixtures of samples from sys	-
le 1 Composition of initial mixtures of samples from sys	

J. Therm. Anal. Cal., 74, 2003

idenced by the composition of preparations heated at 720°C and the mass losses of samples recorded after this heating. The samples after heating at 720°C (24 h) did not contain SbVO₅₍₈₈₎ already, but were mixtures of SbVO_{4.5} and Sb₃V₂Mo₃O₂₁, and samples above 20.00 mol% MoO₃ contained additionally β -Sb₂O₄.

Further investigations were aimed at determining the model of the formed solid solution of MoO₃ in SbVO₅. Taking into account the fact that ionic radii of Sb⁵⁺ (61 pm) and V^{5+} (54 pm) are close to each other, the possibility of replacing them in the crystal lattice of SbVO₅ by Mo^{6+} ions (59 pm) is probable to the same extent. Because of this the investigations dealt with the majority of theoretically possible models describing the formation of MoO₃ solution in SbVO₅. Thus, if the Mo⁶⁺ ions are incorporated into the crystal lattice of SbVO5 instead of V5+ ions, the compensation of excessive positive charge is possible through:

- formation of cationic defects (\Box) in the V⁵⁺ sublattice; a solid solution corresponding to such model is described by the formula $SbV_{1-6x} \Box_x Mo_{5x}O_5$ (model I);
- reduction of V⁵⁺ ions to V⁴⁺; then the solid solution formula can be written as Sb⁵⁺
- $V_{1-2x}^{5+} V_x^{4+} Mo_x O_5$ (model II); reduction of V^{5+} to V^{3+} ; the solution formula is as follows: $Sb^{5+}V_{1-3x}^{5+} V^{3+}Mo_{2x}O_5$ (model III);
- reduction of Sb⁵⁺ ions to Sb³⁺; the solution formula has a form of $Sb_{1-x}^{5+}Sb_x^{3+}V_{1-2x}^{5+}Mo_{2x}O_5$ (model IV);
- formation of cationic defects in the Sb^{5+} sublattice; the solution formula gets a form of $Sb_{1-x}\Box_x V_{1-5x}Mo_{5x}O_5$ (model V).

In the case of the models II, III and IV the composition of the samples in terms of oxides V_2O_5 , MoO₃, α -Sb₂O₄ is identical and can be inferred from a common expression SbV_{1-x}Mo_xO_{5+x/2}.

Considering that the Mo⁶⁺ ions can be incorporated into the crystal lattice of SbVO₅ to the same extent instead of both V^{5+} and Sb^{5+} , one of possible models of the solution including a charge compensation through cationic defects at V⁵⁺ is described by the formula $Sb_{1-5x}V_{1-5x}\Box_{2x}Mo_{10x}O_5$ (model VI).

Also the case has been taken into account, where the Mo^{6^+} ions replace Sb^{5^+} in the lattice of SbVO₅ with a simultaneous charge compensation through a formation of defects in the Sb⁵⁺ sites; such solution has a formula of Sb_{1-6x} \Box_x VMo_{5x}O₅ (model VII).

Investigations aimed to determine whether in reality one of theoretically presented possible models are followed in the case of MoO₃ solution in SbVO₅ consisted of a synthesis of preparations from the oxides V_2O_5 , MoO₃ and α -Sb₂O₄ with their composition corresponding to each presented model and containing 10.00 or $15.00 \text{ mol}\% \text{ MoO}_3$ in the oxides mixture. The oxide mixtures were used to form pellets that were heated cyclically under conditions identical with those for samples from the system $SbVO_5-Sb_3V_2MO_3O_{21}$. The composition of the prepared samples and the XRD results after the final heating cycle are presented in Table 2.

The XRD analysis results have shown that all preparations with their composition consistent with the models I–VI contained after the final heating cycle only α -Sb₂O₄ in trace amounts beside the solid solution of MoO_3 in SbVO₅, whereas the preparations with their composition described by the model VII contained, beside $SbVO_{5(s,s,)}$, the

	Composition of oxide mixtures/mol%				
No.	MoO ₃	V_2O_5	α -Sb ₂ O ₄	Model of solid solution	Phase composition
1	10.00	42.00	48.00	SbV _{1-6x} □ _x Mo _{5x} O ₅	
2	15.00	38.00	47.00	(model I)	
3	10.00	42.50	47.50	SbV _{1-x} Mo _x O _{5+x/2}	
4	15.00	38.75	46.25	(model II, III, IV)	SbVO _{5(s.s.)} +
5	10.00	43.00	47.00	$Sb_{1-x}\Box_xV_{1-5x}Mo_{5x}O_5$	traces of α -Sb ₂ O ₄
6	15.00	39.50	45.50	(model V)	
7	10.00	44.50	45.50	$Sb_{1-5x}V_{1-5x}\square_{2x}Mo_{10x}O_5$	
8	15.00	41.75	43.25	(model VI)	
9	10.00	48.00	42.00	$Sb_{1-6x}\Box_xVMo_{5x}O_5$	ShVO+V.O
10	15.00	47.00	38.00	(model VII)	$50 \text{ v} \text{O}_{5(\text{s.s.})}^{+} \text{ v}_{2} \text{O}_{5(\text{s.s.})}$

 Table 2 Composition of initial mixtures of samples representing the theoretical models of MoO3 solid solution in SbVO5 and XRD analysis results for preparations after final heating cycle

solid solution of MoO₃ in V₂O₅. The obtained result suggested that the actual model of solid solution being formed could be realised in the system SbVO₅–MoO₃. In order to corroborate such suggestion, samples were prepared both from oxides and from SbVO₅ with MoO₃ containing, in terms of the oxides, 10.00, 15.00 or 20.00 mol% MoO₃. These samples were heated under conditions identical with those applied in the case of samples representing the system SbVO₅–Sb₃V₂Mo₃O₂₁. After the final heating cycle the samples comprising in their initial mixtures 10.00 or 15.00 mol% MoO₃ were monophase and contained only the solid solution of MoO₃ in SbVO₅, whereas the sample comprising in its initial mixtures 20.00 mol% MoO₃ beside SbVO₅(s.s.) contained trace amounts of Sb₃V₂Mo₃O₂₁.

On the DTA curves of the samples containing only the solid solution of MoO₃ in SbVO₅, two endothermic effects were registered, the first beginning at ~690°C, the other at ~810°C. The first one is, according to the results of previous research, associated with a decomposition of the solid solution of MoO₃ in SbVO₅, while the other is due to melting one of products of the decomposition, i. e. SbVO_{4.5}. On this stage of investigations it cannot be excluded that in air atmosphere the decomposition product is a non-stoichiometric compound of Sb_{0.92}V_{0.92}O₄ possessing a rutile-type structure and an XRD characteristics almost identical with SbVO₄ [14, 15].

Selected theoretical models of the solid solution of MoO_3 in $SbVO_5$ and the system $SbVO_5-Sb_3V_2Mo_3O_{21}$ are marked on the component concentration triangle of the system $V_2O_5-MoO_3-\alpha-Sb_2O_4$ (Fig. 1). Dividing the system $V_2O_5-MoO_3-\alpha-Sb_2O_4$ into subsidiary subsystems was carried out on the base of the previous results and those presented in this work [7, 16].

J. Therm. Anal. Cal., 74, 2003

Conclusions

The obtained results of research allow a statement that in the ternary oxide system V_2O_5 -MoO₃- α -Sb₂O₄ solid solution phases are formed, where MoO₃ is incorporated into the crystal lattice of SbVO₅. The limit of solubility of MoO₃ in SbVO₅ does not exceed 20.00 mol%. The DTA investigations indicate that phases of this type are stable up to 690±10°C.

On the base of the localisation of SbVO₅-MoO₃ intersection, in which the formation of solid solution has been established, it can be inferred that this is a substitutional solid solution, where the Mo⁶⁺ ions are incorporated into the crystal lattice of SbVO₅ instead of both Sb⁵⁺ and V⁵⁺, and a compensation of excessive positive charge occurs through a formation cationic defects at Sb⁵⁺ and V⁵⁺ (Sb_{1-6x} \Box_x V_{1-6x} \Box_x Mo_{10x}O₅ – model VIII). The presence of α -Sb₂O₄ only in trace amounts, beside SbVO_{5(s.s.)}, in the samples corresponding to the remaining models of solid solutions does not exclude the existence of homogeneity area of such-type phases. Investigations aimed at explaining the uncertainties and establishing the range of existence of the formed solid solution will be continued.

J. Therm. Anal. Cal., 74, 2003

References

- 1 W. Ueda and K. Oshihara, Appl. Catal., A 200 (2000) 135.
- 2 H. W. Zanthoff, S. A. Buchholz and O. Y. Ovsitser, Catal. Today, 32 (1996) 291.
- 3 S. Albonetti, G. Blanchard, P. Burattin, T. J. Cassidy, S. Masetti and F. Trifiro, Catal. Lett., 45 (1997) 119.
- 4 G. Centi, S. Perathoner and F. Trifiro, Appl. Catal., A 157 (1997) 143.
- 5 H. B. Chiang and M. D. Lee, Appl. Catal., A 154 (1997) 55.
- 6 E. Filipek, J. Therm. Anal. Cal., 56 (1999) 159.
- 7 E. Filipek, J. Therm. Anal. Cal., 64 (2001) 1095.
- 8 E. Filipek, K. Rakowska, Proc. VIIth Eur. Conf. Solid-State Chem., Madrid 1999, p. 32.
- 9 I. Rychlowska-Himmel and P. Tabero, J. Therm. Anal. Cal., 65 (2001) 537.
- 10 M. Kurzawa, I. Rychlowska-Himmel, M. Bosacka and A. Blonska-Tabero, J. Therm. Anal. Cal., 64 (2001) 1113.
- 11 Powder Diffraction File, International Center for Diffraction Data, Swarthmore (USA) 1989, 9–387; 11–694; 5–508; 5–534; 11–689; 33–1491; 26–107.
- 12 M. Kurzawa and A. Blonska-Tabero, J. Therm. Anal. Cal., 72 (2003) 145.
- 13 D. Żivković, I. Katayama, A. Kostov and Z. Żivković, J. Therm. Anal. Cal., 71 (2003) 567.
- 14 R. Renaud, Rev. Chim. Miner., 8 (1971) 633.
- 15 S. Hansen, K. Stahl, R. Wilson and A. Andersson, J. Solid-State Chem., 102 (1993) 340.
- 16 E. Filipek, J. Therm. Anal. Cal., 65 (2001) 519.